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Prologue:
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• XX of you filled out the feedback survey. Main take-aways:


• TBA


• What were the main problems with the exercises?

Prologue 
Feedback and exercises
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• Understand the concept of bootstrapping and for what it is useful


• Understand the concept of a confidence interval and learn how to compute 
and interpret them


• Understand how we can become more confident in our estimation of 
population parameters

Learning Goals
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Motivation
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• Usually we cannot study the populations of interest directly → statistical 
inference via random samples


• To interpret estimates from random samples, we must know about the 
properties of our samples 


• Especially: their sampling distribution → determines confidence in estimates

Why bootstrapping?

6Image source: Oskar Herrfurth, Public 
domain, via Wikimedia Commons

• In the previous session we learned how to study the 
sampling distributions of point estimates using MCS 


• But this assumed that we can draw many samples, or 
even know certain properties of the population


• In practice we can draw only one sample and know 
little about the population → bootstrapping

https://upload.wikimedia.org/wikipedia/commons/3/3b/Muenchhausen_Herrfurth_7_500x789.jpg
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• The idea of bootstrapping is to study the sampling 
distribution of our point estimate by re-sampling our 
sample


• This means: we draw many sub-samples from our sample 
and study them via MCS


• It turns out that this does not help us to improve our 
estimates...

Why bootstrapping
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Re-sampling somehow allows us to "pull 
ourselfes up by your bootstraps"

• ...but gives accurate information about the sampling distribution of our 
estimate → quantify uncertainty due to random sampling 
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• Suppose we want to know the average study semester of EUF students


• Population parameter of interest:  (average study semester)


• We could make a census and ask all students but this is to much work


• We might therefore ask a random sample of 100 students about their 
study semester and infer the population parameter of interest


• Sample statistic: sample mean  (or ) of the study semester

μ

x̄ ̂μ

An introductory example

8



Claudius Gräbner-Radkowitsch

• Suppose that the distribution of study semesters in our sample is as such:

An introductory example
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• However, if we asked another 50 students, we would most likely get a 
different sample statistic → sample variation


• Thus, it might be good and honest to quantify the uncertainty around our 
guess of 4.84 → requires knowledge about sampling distribution of x̄
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• The average study semester of our 

sample is given as 


• If our sample was drawn randomly, this 
would be a good guess for the average 
study semester in the population

x̄ = 4.84
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• But how can we get information about the sampling distribution without 
repeating the process of drawing a sample many, many times?


• The answer: re-sampling, i.e. drawing a sample from our sample


• Draw 100 elements from our sample but with replacement (since )


• What we are doing is called re-sampling with replacement


• Here is the result of a single re-sampling activity:

n = 100

An introductory example
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• The re-sample has some similarities to the original sample, but is not 
identical → sampling variation due to re-sampling


• But does this re-sample help us understand the sampling distribution of our 
guess  for the population parameter ?


• No, since it is only a single re-sample! 


• Lets repeat this process 100 times and compute  for each re-sample!

x̄ μ

x̄

An introductory example
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• The figure on the right side is called the bootstrap distribution


• Result of re-sampling the original sample many times and compute the sample 
statistic of interest for each iteration


• Note that this distribution looks approximately like a normal distribution


• The bootstrap distribution is an approximation to the sampling 
distribution of our sample statistic x̄

An introductory example
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• We were interested in the population parameter , i.e. the average study 
semester of EUF students


• We drew a single random sample and computed the sample mean 


• In principle, this is not a bad guess for , but we were aware that the 
sample mean is subject to sample variation 


• To get information about the sample distribution of  we did re-sampling 
with replacement and produced a bootstrap distribution


• This is the distribution of sample means for 1000 re-samples from our original 
sample


• The bootstrap distribution approximates the sample distribution of 

μ

x̄

μ

x̄

x̄

Central take-aways and implementation
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• To draw a sample or repeated samples you may use the convenience 
function moderndive::rep_sample_n():

Central take-aways and implementation
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moderndive::rep_sample_n( 
    tbl = pop_data, 
    size = 50,  
    replace = TRUE,  
    reps = 1000)

• The code above draws 1000 samples of size 
50 from the tibble pop_data; each sample is 
drawn with replacement


• The function always produces tibbles of the 
following form:

The population from which 
samples should be drawn

The size of the samples

Should re-samples be drawn with 
or without replacement? 

Ho many samples should be 
drawn?
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• Consider the data set T15-
SemesterSample.csv from the course page 

• Contains a sample of EUF students and their 

study semester

• Compute the bootstrap distribution for the 

sample mean as discussed above to answer 
the following two questions:

Exercise 1: Constructing a bootstrap distribution
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Finished!I am 
stuck 

and have 
a 

question!

I am 
working 
on it, leave me alone!

1. What is the effect of the number of iterations during the bootstrap 
resampling process?


• Look at the resulting distributions for 10, 50, 100, 500, and 1000 
replications! What do you observe?


2. How could you use the bootstrap distribution to quantify your uncertainty 
about the sample mean and its usefulness to estimate ?μ
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• For higher number of iterations, the values look more and more normally 
distributed


• Example solution is available online

Exercise 1: Constructing a bootstrap distribution
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Confidence intervals

17



Claudius Gräbner-Radkowitsch

• We used the bootstrap to get an approximation of the sampling distribution 
of our point estimate 


• But we would we want this information in the first place?


• Since point estimates are different for each sample drawn, it would be nice 
quantify our confidence in the particular estimate


• Are we sure that the estimate is very close to the true parameter ?


• Or might the point estimate be rather far away due to sampling variation?


• If the sampling variation is very high, a single point estimate is more likely to 
be misleading than if the sampling variation is low


• Thus, a better (or at least: more honest) alternative to a point estimate is a 
confidence interval: an interval for which are are pretty sure it contains 

x̄

μ

μ

Motivation for confidence intervals
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• As alway, Ismay & Kim (2022) have a nice analogy:

Motivation for confidence intervals
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• The bootstrap distribution makes it easy to construct intervals for which we 
can be confident they contain μ

Image source: 
Ismay & Kim (2022)

https://moderndive.com/8-confidence-intervals.html#ci-build-up
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• To construct a confidence interval, the following steps are necessary:


1. Choose the desired level of confidence


2. Do the bootstrapping 


3. Choose the method to compute the confidence interval


4. Compute the confidence interval


5. If desired, visualise the results


• We now learn how this can be done using the package infer


• We focus on the percentile method to compute confidence intervals


• An alternative method is described in the mandatory readings

Constructing a confidence interval
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• We first need to specify the desired level of confidence


• Confidence is measure in percent, typical values are 90%, 95% or 99%


• The higher the confidence the larger the confidence interval

Percentile method: intuition
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• We just pick the middle 95% 
of the bootstrap distribution:
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• Assume we want to construct a 95%-confidence interval


• We just pick the middle 95% of the bootstrap distribution


• To get the quantitative thresholds, compute the 2.5 and 97.5th percentile:

Percentile method: intuition
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P2.5 = 4.2 P97.5 = 5.52
quantile( 
    x = sample_vals,      
    probs = 0.025 
)

quantile( 
    x = sample_vals,      
    probs = 0.975 
)

CI95% [4.2; 5.52]
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1. Specify the variable that is of main interest using infer::specify()


2. Generate basis for the bootstrap distribution using infer::generate()


3. Generate the actual bootstrap distribution using infer::calculate()


4. Process the bootstrap distribution further, e.g. to create visualisations or to 
compute the actual CI

Confidence interval: the whole workflow
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1. Specify the variable that is of main interest using infer::specify()


• In the present case:  as estimate for the the population parameter :

data_used %>% 
    infer::specify(formula = MeanSemester ~ NULL)


• The ~ NULL part is because we are only interested in the sampling distribution 
of  → later we will adjust this notation to, e.g., the regression context


2. Generate basis for the bootstrap distribution using infer::generate()


data_used %>% 
    infer::specify(formula = MeanSemester ~ NULL) 
    infer::generate(reps = 1000, type = "bootstrap")


• reps controls the number iterations, type should always be "bootstrap"

x̄ μ

x̄

Confidence interval: the whole workflow
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3. Generate the actual bootstrap distribution using infer::calculate()


bootstrap_dist <- data_used %>% 
    infer::specify(formula = MeanSemester ~ NULL) 
    infer::generate(reps = 1000, type = "bootstrap") %>% 
    infer::calculate(stat = "mean")


• In our case the statistic of interest is the mean, so we set stat to "mean"


• The code above produces the bootstrap distribution that forms the basis for 
all further analysis steps


• For instance, to compute the confidence intervals we use infer::get_ci():


conf_ints <- bootstrap_dist %>% 
    infer::get_ci( 
        level = 0.95,  
        type = "percentile")

Confidence interval: the whole workflow
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• We can also take a more visual approach to create a plot with the 
confidence intervals directly using infer::visualize():


visualize(student_boot_dist) +  
    infer::shade_confidence_interval( 
        endpoints = conf_ints)

Confidence interval: the whole workflow
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• The interpretation of confidence intervals is not straightforward 😵💫


• Its main purpose is of the CI is to provide a corridor for which we are 
confident that it contains the population parameter of interest


• The problem: we do not know the true value for  so we will never know 
whether our CI actually contains  or not 🙄


• But what we can do is to consider an artificial situation in which we know  
and this way study the effectiveness of constructing CI using the method

μ
μ

μ

Interpreting confidence intervals
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Lets run an example!
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• Consider the data set 
DataScienceExercises::EUFstudents


• Contains a census for all EUF students and 
their height → we know that 


• This allows us to test whether our method to 
construct CI actually works

μ = 166.5808

Exercise 2: how well do confidence intervals work?
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• To do so, we will conduct a MCS. To prepare it, do the following once:


• Draw a random sample from the population


• Compute the 95% percent confidence interval


• Check whether the confidence interval contains the true average height


• To test whether an interval the true value you may use ifelse()!

Finished!I am 
stuck 

and have 
a 

question!

I am 
working 
on it, leave me alone!
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• We have the code to test whether a CI contains a true value once, now we 
iterate this process 100 times to draw more general conclusions


• It turns out that about 95% if the CI contain the true value


• This is where the 95% come from: 


• We expect 95% of the CIs so constructed contain the true value


• But in reality we only draw one sample and we can only construct the CI once 


• Nevertheless, this gives us a quantitative measure for the confidence in our 
statement


• What it we computed an 80% confidence interval?


• Right, we expect 80% of the CIs so constructed contain the true value

The role of confidence
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• But what is the correct way to interpret a confidence interval?


• Assume we have , then the correct interpretation is:CIX% = [a; b]

How to interpret confidence intervals
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If we repeated our sampling procedure a large number of times, we expect about X% of 
the resulting confidence intervals to capture the value of the population parameter.

• An informal variant frequently use is:

• A wrong interpretation is:

We are X% "confident" that  captures the value of the population 
parameter.

CIX% = [a; b]

There is an X% probability that contains .CIX% = [a; b] μ
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• Note that there are two main determinants for the size of a CI:


• First, the larger the confidence level, the larger the confidence interval


• Second, the larger our sample, the smaller the confidence interval

Final remarks
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• This indicates how important 

sample size is in practice


• Larger samples allow for more 
confident point estimates


• If we have a fixed sample size, 
we can increase confidence 
only by making less 
informative guesses
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Summary & outlook
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• In reality we can only use a single random sample to make an inference 
about an unknown population parameter


• The sample must be random in order to allow for effective inference


• But since it is random we also have random variation


• To quantify our confidence in our estimate we would like to take into 
account the effect of this random variation → get information about 
sampling distribution of the estimate


• A good approximation for the (unknown) sampling distribution is the 
bootstrap distribution


• The bootstrap distribution is obtained by doing re-sampling with 
replacement on our sample

Summary
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• Bootstrap distributions cannot improve the point estimates as such 


• Their sample statistics differ from the population parameter of interest


• The standard error of the bootstrap distribution is good approximation for 
standard error of the (unknown) sampling distribution


• There are two main determinants for the size of a confidence interval:


• The higher the confidence, the larger the interval


• The larger the sample size, the smaller the interval


• This illustrates how important the sample size is in practice

Summary
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• In practice, confidence intervals are less frequently used than p-values, 
which we encounter in the next session


• But CI represent a more intuitive and transparent measure for the 
uncertainty associated with point estimates


• Next session we will learn how to assess hypotheses in a quantitative way

Outlook
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Tasks until next week: 

1. Fill in the quick feedback survey on Moodle

2. Read the tutorials and lecture notes posted on the course page

3. Do the exercises provided on the course page and discuss problems 

and difficulties via the Moodle forum

Image source: Oskar Herrfurth, Public 
domain, via Wikimedia Commons
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