
Prof. Dr. Claudius Gräbner-Radkowitsch
Europa-University Flensburg, Department of Pluralist Economics

www.claudius-graebner.com | @ClaudiusGraebner | claudius@claudius-graebner.com

Basics in R
24.03.2022, Data Science (SpSe 2022): T3

http://www.claudius-graebner.com
https://twitter.com/ClaudiusGrabner
mailto:claudius@claudius-graebner.com

Claudius Gräbner-Radkowitsch

I. Learn how to navigate the R-Studio interface and how to issue basic R
commands

II. Explore the concepts of objects, functions, and assignments

III. Learn about R packages

IV. Learn how to use and define functions

Goals for today

2

Claudius Gräbner-Radkowitsch

The R Studio interface

3

Claudius Gräbner-Radkowitsch

• After starting R-Studio, you will see something like this:

The R Studio interface

4

Claudius Gräbner-Radkowitsch

• As a first step, I recommend you to adjust some general settings:

• RStudio → Settings → General →

The R Studio interface
Some general settings

5

Claudius Gräbner-Radkowitsch

• Create a new script and you will see R Studio in the way you work with it
most of the time:

The R Studio interface

6

Claudius Gräbner-Radkowitsch

The R Studio interface
The most important elements

7

The console:
used to issue
commands to the
computer directly

The script
editor: a ‘fancy’
text editor to
modify R files

The run button: click
here to execute marked
part of a script in the
console

We will learn about environments, projects, and
working directories later!

The
environment:
an overview
over all objects
you have
defined so far

Your working
directory:
the files in your
current project

Claudius Gräbner-Radkowitsch

Basic commands in R

8

• Now lets practice how to issue commands to R

• All the practical steps (and some additional information) are summarised in
the section “Issue commands to your computer” of the tutorial R-
basics on the course page

Claudius Gräbner-Radkowitsch

• Sit together in groups of 2-3

• Execute the following mathematical computations via the console:

• Write the following commands in R syntax in the script editor and execute
the script:

• What do you see?

5 + 12

(2 ⋅ 3)2

2 ⋅ 5.8

82 + 54

3

Intermediate task

9

Claudius Gräbner-Radkowitsch

Objects, functions, and
assignments

10

Claudius Gräbner-Radkowitsch

Objects, functions, and assignments

11

To understand computations in R, two slogans are helpful:

Everything that exists is an object.

Everything that happens is a function call.
John Chambers

“
• Every number, function, letter, or whatever there is, is an object that is stored

somewhere in the physical memory of your computer

• Whenever we tell our computer to do something via R, we are effectively
calling a function

• The operation 2 + 3 refers to three objects:

• The numbers 2 and 3, as well as the function + (addition)

• It executes the addition function and produces a further object: the number 5

Claudius Gräbner-Radkowitsch

• What if we wanted to keep the result of a computation for further use?

Assignments

12

This result is created after the addition has been execute
and stored somewhere in your computer memory

• Since it is impossible to remember the precise location in the computer, the
way to go is to give the result a name, and then later call it by this name

• This process of binding an object to a name is called assignment

• It is done by the function assign():

• The name int_results is now bound to the result of 2 + 3!

Claudius Gräbner-Radkowitsch

• You can now call the result by its name:

Assignments

13

• You see all the names currently given in the upper right pane of R-Studio:

Claudius Gräbner-Radkowitsch

• Since assignments happen frequently, there is a shortcut to use assign():

• assign(“int_result”, 2 + 3) does the same as:

• int_result <- 2 + 3

• Tip: check out the keyboard shortcut for your OS (Mac: ⌥-)

• Not all names are allowed → see the tutorial reading for more info

• You can remove an assignment by calling the function rm() on the name:

Assignments - shortcuts, names, and removal

14

Claudius Gräbner-Radkowitsch

• One object can have many names…

• …but each name can only point to one single object:

Assignments - what about many of them?

15

• Be aware not to overwrite important pre-defined assignments

• In the worst case: remove all assignment and restart R (Mac: ⇧⌘0)

Claudius Gräbner-Radkowitsch

• Get again together in groups of 2-3

• Compute the following chain problem and assign a name to each
intermediate result:

• What is the result when you call d?

a = 2 + 3

b =
5 ⋅ a

2

c = (b + 1)2

d = c

Basic commands and assignments - Tasks

16

Claudius Gräbner-Radkowitsch

Functions

17

Claudius Gräbner-Radkowitsch

• A function is an algorithm, which takes an input, applies a routine, and
returns an output:

Functions

18

Input Function routine Output

• The function log(), for instance, computes the logarithm of a number:

2 log() 0.6931472

• Functions usually have names that we can use to call them

• Two main ways to call a function: the prefix or infix form

Claudius Gräbner-Radkowitsch

• The most common form is the prefix form:

Functions
Calling functions

19

assign(“test”, 2)
Name of the

function

Open brackets

The arguments, separated by commas

(usually include the input)

Closed brackets

• Alternatively, we might use the infix form

• Function name is written between the arguments, e.g.: 2 + 3

• Most common for mathematical operations → further readings

Claudius Gräbner-Radkowitsch

• There are two different types of arguments:

• Mandatory arguments and optional arguments

• Mandatory arguments usually represent the function input

• Optional arguments allow you to specify details on how the function routine
should be executed

• While mandatory arguments can be specified via their name, optional
arguments usually must be specified via their name

• Let’s look at the example of mean(), a function that computes the mean.

Functions
Calling functions

20

Claudius Gräbner-Radkowitsch

• We first use the function c() – which stands for concatenate – to create a
vector of numbers:

t_vec <- c(1, 2, 3, 4)

• We then want to use mean() to compute the mean of this set of numbers:

mean(t_vec)

• The first (mandatory) argument of mean() is called x and means the set of
which the mean should be computed

• Being a mandatory argument we can, but do not need to specify it:

mean(x=t_vec)

Functions
Calling functions - mandatory arguments

21

Claudius Gräbner-Radkowitsch

• Among others, mean() also accepts an optional argument called na.rm

• It specifies how mean() should deal with missing values in the original input

• If na.rm equals TRUE, then missing values (NA) are removed before the mean gets
computed, if na.rm equals FALSE, then they are not

• We set this value by writing the name of the optional argument followed by = and
the value:

• Lets add a missing value to our original vector to see the difference:

t_vec <- c(1, 2, 3, 4, NA)

• Now test how the three applications of mean() differ:

mean(t_vec) vs. mean(t_vec, na.rm=TRUE) vs. mean(t_vec, na.rm=FALSE)

Functions
Calling functions - optional arguments

22

Claudius Gräbner-Radkowitsch

• As all optional arguments, na.rm, has a default value that is chosen if you
do not set another value explicitly

• How to know whether there are optional arguments, what are their defaults,
or what the names of the arguments are?

• Use the Tab key after having written the open bracket:

Functions
Calling functions - mandatory and optional arguments

23

• Call the function help():

• Here: help(mean)

Claudius Gräbner-Radkowitsch

• Define a vector with the elements -2, 2, 4, 6, 9 and NA

• Apply the following functions and understand what they are doing:

median()

is.na()

anyNA()

sum()

• There are two different ways to compute the variance of a vector: compute
the population variance, or the sample variance. What does the function
var() do? How can you compute the other version in R?

Function calls - practice

24

Claudius Gräbner-Radkowitsch

• Knowing how to define your own functions important for two reasons:

• Defining own functions is super useful and often recommendable

• It allows us to better understand how functions work in general

• We define a new function via the function function() 🙈

• Let’s look at the definition and go through it in practice!

Defining your own functions

25

Claudius Gräbner-Radkowitsch

Defining our own functions

26

The name of the new function
and the association operator

The arguments of the new
function

Note that all associations only
exist within the function!

Specifying what the function
returns as its output

The function body:

The routine the function should

apply to the input

Claudius Gräbner-Radkowitsch

• There are many reasons to use functions, e.g.:

1. Code becomes more concise and transparent

2. Functions help to structure your code

3. Functions facilitate debugging and help avoiding incidental mistakes

• Before writing a function in daily life, check via Google whether it is not
already written 😉

• When developing a more complicated function, it usually a good idea to
sketch your ideas with pen an paper, and then implement it

• Always document your functions → see the readings for a manual

Final remarks about functions

27

Claudius Gräbner-Radkowitsch

• Go together in pairs, one of you is the driver, the other the navigator

• Only the driver writes code, the navigator tells her what to do

• After 5 minutes, exchange your work with another team. These two should try to
understand what you have done

• Then, sit together, give mutual feedback on your implementation and discuss open
questions

• The task is to write a function that takes a set of numbers as an input, and
normalises them into the range of zero and one:

• Two R functions that might come in handy are min() and max()

• Bonus: write a function that z-normalizes the vector!

x

zi =
xi − min (x)

max (x) − min (x)

Let’s practice!

28

Claudius Gräbner-Radkowitsch

Packages

29

Claudius Gräbner-Radkowitsch

• One cool thing about R is that there is a great community of R users that
write objects and functions that perform useful purposes and makes them
available to all

• This process of ‘making available objects to others’ is done via the use of R
packages

• You can think of an R package as a collection of assignments and
documentations that people pass around

• If you install R, you can use all objects that…

• …you defined for yourself

• …are pre-defined in R

• If you want to use objects defined by someone else in her package you
need to install this package

R packages

30

Claudius Gräbner-Radkowitsch

• The official way to distribute packages is via CRAN, the The Comprehensive
R Archive Network

• To install a package that was deployed on CRAN you must execute the
following command:

install.packages("NAME OF PACKAGE")

• To install the package ineq, for instance, do:

install.packages("ineq")

• To install packages that were not yet released on CRAN, other functions are
available

• After having installed the ineq package, you can use all objects defined by
it

Installing packages

31

Claudius Gräbner-Radkowitsch

• One object defined in ineq is the function Gini()

• Simply calling Gini() does, however, not work

• You need to tell R that Gini() is defined by the package ineq

• To do use, use :::

ineq::Gini(c(1,2,3,4))

• You may think of :: as building a bridge between your R session and all objects
defined in a package

• A sometimes more convenient way is to use the function library() at the beginning
of your script:

library(ineq)

• This makes available all objects of ineq in your current R session

Calling objects defined in packages

32

Claudius Gräbner-Radkowitsch

• Packages are written by many different people

• It is not unlikely that two packages assign the same same to different
objects

• If you then attach both packages, the assignment of the earlier package will
be masked

• Try this by attaching the two packages dplyr and plm

• In these cases, you must use :: to access the masked object of the first
package

• As a general rule: always use :: whenever masking is a potential problem →
makes your code much easier to understand for you and others

• Use the function conflicts() to see all names for which conflicts exists

Packages and masking

33

Claudius Gräbner-Radkowitsch

• You made your first big steps into the R programming world 💪🥳

• We checked out the main elements of the R-Studio interface

• We learned about how to issue commands to the computer

• We learned that everything in R that exists is an object, and everything that
happens is a function call

• We learned about how to associate objects with names

• We learned about how to call and define functions

• This was a lot → its a good idea to take your time to digest and repeat
these topics

Summary and outlook

34

Claudius Gräbner-Radkowitsch

Outlook

35

Claudius Gräbner-Radkowitsch

• Next week we will…

• …learn about the different types of objects you can encounter in R

• …learn how to automate tasks with loops and conditionals

• Then we are finished with the general introduction and more to data
visualisation the week thereafter

Summary and outlook

36

Tasks until next week:

1. Fill in the quick feedback survey on Moodle

2. Read the tutorials posted on the course page

3. Do the exercises provided on the course page and discuss problems

and difficulties via the Moodle forum

