
Prof. Dr. Claudius Gräbner-Radkowitsch
Europa-University Flensburg, Department of Pluralist Economics

www.claudius-graebner.com | @ClaudiusGraebner | claudius@claudius-graebner.com

R Projects and data import
27.04.2022, Data Science (SpSe 2022): T7

http://www.claudius-graebner.com
https://twitter.com/ClaudiusGrabner
mailto:claudius@claudius-graebner.com

Claudius Gräbner-Radkowitsch

Prologue:

2

Claudius Gräbner-Radkowitsch

• One of you filled out the feedback survey.

• Main take-aways:

• If anything, the session was a bit too slow

• If I do not get other signals, I will speed up in the next sessions

• What were the main problems with the exercises?

Prologue
Feedback and exercises

3

Claudius Gräbner-Radkowitsch

I. Learn how to set up an R project

II. Learn how to use the here package and import data

III. Learn how to import data into R using data.table::fread()

Goals for today

4

Claudius Gräbner-Radkowitsch

Data wrangling in R

5

Claudius Gräbner-Radkowitsch

• Importing and preparing is the most fundamental task in data science

• It is also largely under-appreciated 🙄

The role of data preparation

6

Data preparation
and processing

Visualisation

Presentation of the insights: an overall story

Data analysis and
modelling

Claudius Gräbner-Radkowitsch

• According to several surveys, data scientists usually spend about 80% of
their working time with importing and preparing data

• At the same time, few people learn how to do it properly

• Although it might sound a bit boring in the first place, few skills will

• …save so much time

• …save you so much nerves and frustration

• …help you making so many new friends

• …in the medium run as skills in data wrangling!

Data wrangling is an essential skill

7

Claudius Gräbner-Radkowitsch

• The goal: learn about a default directory structure and a general way to
document everything you do with your raw data

• This will also facilitate the collaboration with future-you considerably

• Nothing is worse than hating your past-you for not documenting correctly
where data came from, or how it has been prepared

• Here we will learn a general workflow that, once mastered, helps you to
avoid all editable problems with certainty

• A central idea is that all your research results must be reproducible from
the raw data at any time

• This implies that you must not manipulate your raw data at any cost

• Raw data is what you download from the internet, gather through an
experiment, or code yourself

Our goal

8

Claudius Gräbner-Radkowitsch

• Raw data must not be changed, but is usually not in a state we can work
with 🤨

How to keep your work transparent

9

1. Gather data, save
it on you PC

• Saving the scripts in steps 2 & 3 makes your work fully reproducible

• By looking into the script you will always know what you did to your raw
data → you can also heal basically every mistake you made, not harm done!

2. Import this data
into R

4. Use the tidy data for further
analysis: visualisation, modelling, etc.

3. Write a script that transforms raw
data into tidy data

Claudius Gräbner-Radkowitsch

• The remainder will be organised as follows:

Outlook

10

Set up you project environment

Import data

Transform raw data into tidy data

Save data

This is done only
once per project}

This might be done
several times}

Claudius Gräbner-Radkowitsch

Set up your R project

11

Claudius Gräbner-Radkowitsch

• Before we talk about importing raw data we need to discuss where the raw
data should actually be saved

• A prerequisite for a transparent, reproducible, and easy-to-work-with project
is the right directory structure

Setting up your working environment

12

• Thus, for every task in R you should set
up your project like this:

• All the relevant steps to set this up, and
the rationality for this structure are
described in the respective tutorial

Claudius Gräbner-Radkowitsch

• There are two ways in which you tell your computer where a certain file is
located:

• Via an absolute path: description starts at the root directory 🌲

• Via a relative path: description starts at your current position in the file system

Paths and the here-package

13

• Assuming we are ‘located’ in the folder DataScienceExercises: and want
to point to the file nycflights21_small.rda:

• “/Volumes/develop/teaching/DataScience/DataScienceExercises/data/

nycflights21_small.rda"

• "data/nycflights21_small.rda"

Working directory

Claudius Gräbner-Radkowitsch

• The relative path seems nicer…

• Its shorter 😇 and you can share code without forcing others to adjust the path

• Problem: how to set our location to the directory DataScienceExercises?

• We can do this using setwd(), providing the absolute path to
DataScienceExercises as an argument:

• setwd(“/Volumes/develop/teaching/ 
 DataScience/DataScienceExercises")

• Then we can use “data/nycflights21_small.rda"

• Many people put setwd() at the top of their scripts

• BUT YOU MUST NEVER EVER DO THIS!!!!!!!!!!!!!!!!!!!!!!!!!

Relative paths and setwd()

14

Claudius Gräbner-Radkowitsch

• You should never ever use setwd() in your scripts

• First, it does not help avoiding absolute paths because you have to provide
an absolute path to setwd() 🤯

• Second, it makes people hate you:

Why setwd() is evil and not to be used

15

setwd("/Volumes/Macintosh HD/Users/AbbysUserName/

 PathToFolderThatOnlyExistsHere/ProjectName”)

data_file <- data.table::fread(“data/file.csv”)

Abby writes amazing_script.R 👩💻
Sends file to Ellie 📧

Ellie opens file and executes it 😀

Claudius Gräbner-Radkowitsch

• Thankfully, there is a very simple solution: the package here

• It allows you to set an anchor ⚓ in you project directory

• Then you can create paths relative to this anchor using the function
here::here()

• These commands will always work on every machine

• Always put here::i_am() into the first line of your scripts

The better alternative to setwd() is here

16

• As an argument, provide the location of
the script relative to the project root

• From now on, only provide paths
relative to this root using
here::here()

Claudius Gräbner-Radkowitsch

• Create a new R-Project on your computer

• Create all the required folders

• Write an R script, put it into the right directory,
and make it usable for the here-package

• Check out what the function here::here()
returns and experiment with its use

Your turn

17

Claudius Gräbner-Radkowitsch

Importing data

18

Claudius Gräbner-Radkowitsch

• Now that we have set up the project environment we can import data

• In the following we will assume that you raw data is stored in the folder
data/raw

• The function we use to import a data set depends on the file type:

Import functions

19

csv/tsv files .Rds/RData files Specific formats

data.table::fread() readRDS()

load()

haven::read_dta()

haven::read_sas()

haven::read_spss()

• Basic procedure the same in all cases → focus on reading csv files here

Claudius Gräbner-Radkowitsch

• Good practice: save path to file in a vector:

data_path <- here("data/raw/wb_data.csv")

• Since its a csv file we use data.table::fread():

data.table::fread(file = data_path)

• This uses default options to import the file

• Works often for clean data files

• But for the sake of transparency and since data files are often not clean, we
should specify several optional arguments

• In contrast to the exposition in Wickham and Grolemund (2022) I strongly
recommend using data.table::fread()

How to import data

20

Claudius Gräbner-Radkowitsch

• Download the zip file fread_expls.zip from the course homepage

• Copy the file fread_expls-1.csv into the data directory of your R project

• Write a script that imports the data set into your session

Your turn

21

Claudius Gräbner-Radkowitsch

• For documentation of the next steps, please refer to the tutorial on data
import on the course page

• In the following we will learn when and how to use the following arguments
of data.table::fread():

• file: the relative path to the csv file you want to read → use here::here()

• sep: symbol that separates columns

• dec: symbol used as decimal sign

• colClasses: what object type should be used for the columns?

• For other widely used commands check the tutorial and do the exercises

• But note that there are even more specification options → help(fread)

How to use data.table::fread()

22

Claudius Gräbner-Radkowitsch

• For documentation of the next steps, please refer to the tutorial on data
import on the course page

• In the following we will learn when and how to use the following arguments
of data.table::fread():

• file: the relative path to the csv file you want to read → use here::here()

• sep: symbol that separates columns

• dec: symbol used as decimal sign

• colClasses: what object type should be used for the columns?

• For other widely used commands check the tutorial and do the exercises

• But note that there are even more specification options → help(fread)

How to use data.table::fread()

23

Claudius Gräbner-Radkowitsch

• Especially in Germany, columns are often separated via ; instead of ,

• We can pass a string to sep indicating how the columns are separated

• In the above case: sep = ";"

How to use data.table::fread()
Specifying column delimiters using sep

24

c_code; year; exports; unemployment

AT; 2013; 53.44; 5.34

AT; 2014; 53.39; 5.62

DE; 2013; 45.4; 5.23

DE; 2014; 45.64; 4.98

Claudius Gräbner-Radkowitsch

• For documentation of the next steps, please refer to the tutorial on data
import on the course page

• In the following we will learn when and how to use the following arguments
of data.table::fread():

• file: the relative path to the csv file you want to read → use here::here()

• sep: symbol that separates columns

• dec: symbol used as decimal sign

• colClasses: what object type should be used for the columns?

• For other widely used commands check the tutorial and do the exercises

• But note that there are even more specification options → help(fread)

How to use data.table::fread()

25

Claudius Gräbner-Radkowitsch

How to use data.table::fread()
Specifying decimal separators using dec

26

c_code; year; exports; unemployment

AT; 2013; 53,44; 5,34

AT; 2014; 53,39; 5,62

DE; 2013; 45,4; 5,23

DE; 2014; 45,64; 4,98

• Again in Germany, decimal places are often separated via , instead of .

• We can pass a string to dec indicating how the columns are separated

• In the above case: dec = ","

Claudius Gräbner-Radkowitsch

• Copy the file fread_expls-2.csv into the data directory of your R project

• Write a script that imports the data set into your session such that the
following tibble results:

Your turn

27

Claudius Gräbner-Radkowitsch

• For documentation of the next steps, please refer to the tutorial on data
import on the course page

• In the following we will learn when and how to use the following arguments
of data.table::fread():

• file: the relative path to the csv file you want to read → use here::here()

• sep: symbol that separates columns

• dec: symbol used as decimal sign

• colClasses: what object type should be used for the columns?

• For other widely used commands check the tutorial and do the exercises

• But note that there are even more specification options → help(fread)

How to use data.table::fread()

28

Claudius Gräbner-Radkowitsch

• Whenever numbers should be saved as character, the guessing algorithm of
data.table::fread() often fails:

How to use data.table::fread()
Specifying column types using colClasses

29

c_code,year,exports, PROD_CODE

AT, 2013, 53.44, 0011

AT, 2014, 53.39, 0011

DE, 2013, 45.4, 0011

DE, 2014, 45.64, 0011

• We can specify the column types explicitly by passing a vector to
colClasses:

• colClasses = c("character", rep("double", 2), "character")

• Usually, this is often a good idea to make your code more transparent

• You can also combine it with select and only read selected columns (see

tutorial)

Claudius Gräbner-Radkowitsch

• Now read in the file fread_expls-final.csv and use all the arguments
you consider to be necessary

• Make sure that the column cgroup is stored as a factor

• Then talk to you neighbour and compare your solutions

• Hint:

A final exercise…

30

• To get an idea about the raw data, click on the file
and select “View File” to see it in its raw form → helps
you to choose the right arguments:

• Infeasible for very large files → use nrows and
select to read a representative subset (see tutorial)

Claudius Gräbner-Radkowitsch

• Saving data is much easier than reading data

• The only relevant question is about the format

• If there are no good arguments for using a different format, go for csv

• This can be achieved by data.table::fwrite()with the main arguments:

• x: the name of the object to be saved

• file: the file name under which the object should be saved

• Example: save object exp_tab to file data/exp_tab.csv:

data.table::fwrite( 
 x = exp_tab,  
 file = here::here("data/exp_tab.csv") 
)

And what about saving data?

31

Claudius Gräbner-Radkowitsch

• General idea: you import the data and bind it to an R object - usually a
data.frame

• Then you proceed with transforming this data.frame until it satisfies the
demands for tidy data

Data import as part of data preparation

32

Make yourself comfortable before reading in data -
expect frustration and pain!

• Then you save the data under a
new name, save the script, and
celebrate yourself 🎉🍾🥂

• We will cover the transformation
steps in the next session

Claudius Gräbner-Radkowitsch

• We now know how to organise our working directory and how to import
data

• Next time we will learn how to transform imported raw data into tidy data

• This is the kind of data that is the vantage point for visualisation and modelling

→ Learn to produce the data you have used as input for visualisations yourself

Summary and outlook

33

Tasks until next week:

1. Fill in the quick feedback survey on Moodle

2. Read the tutorial on data import and project management

3. Do the exercises provided on the course page and discuss problems

and difficulties via the Moodle forum

4. Create a project that you can use in the next session and already

download and allocate the raw data posted on the course page

